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Cosmological Particle Creation and Dynamical
Casimir Effect

M. R. Setare

We compute particle creation for a real massive scalar field conformally coupled to a
spatially closed Robertson–Walker space-time background, with time-dependent scale
factor. This is a dynamical Casimir effect with moving boundaries.

KEY WORDS: dynamical Casimir effect; particle creation; scaler field; vacuum.

1. INTRODUCTION

The Casimir effect is one of the most interesting manifestations of nontrivial
properties of the vacuum state in a quantum field theory (for reviews see Birrell and
Davies, 1982; Milton, 1999; Mostepanenko and Trunov, 1997; Plunein et al., 1986)
and can be viewed as a polarization of vacuum by boundary conditions. A new
phenomenon, a quantum creation of particles (the dynamical Casimir effect) occurs
when the geometry of the system varies in time. In two-dimensional spacetime
and for conformally invariant fields the problem with dynamical boundaries can
be mapped to the corresponding static problem and hence allows a complete study
(see Birrell and Davies, 1982; Mostepanenko and Trunov, 1997 and references
therein). In higher dimensions the problem is much more complicated and is solved
for some simple geometries. The vacuum stress induced by uniform acceleration
of a perfectly reflecting plane is considered in (Candelas and Deutsch, 1977). The
corresponding problem for a sphere expanding in the four-dimensional spacetime
with constant acceleration is investigated by Frolov and Serebriany (Frolov and
Serebriany, 1979, 1980) in the perfectly reflecting case and by Frolov and Singh
(Frolov and Singh, 1999) for semi-transparent boundaries. For more general cases
of motion by vibrating cavities the problem of particle and energy creation is
considered on the base of various perturbation methods (Calucci, 1992; Dodonov
and Klimov, 1996; Dodonov, 1998; Jauregui et al., 1995; Ji et al., 1997; Lambrecht
et al., 1996; Sassaroli et al., 1994; Schutzhold et al., 1998) (for more complete list
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of references see Dodonov, 1998). It have been shown that a gradual accumulation
of small changes in the quantum state of the field could result in a significant
observable effect. A new application of the dynamical Casimir effect has recently
appeared in connection with the suggestion by Schwinger (Schwinger, 1993, 1994)
that the photon production associated with changes in the quantum electrodynamic
vacuum state arising from a collapsing dielectric bubble could be relevant for
sonoluminescence (the phenomenon of light emission by a sound-driven gas bubble
in a fluid Barber et al., 1997). For further developments and discussions on this
quantum–vacuum approach see Eberlein (1996), Liberati et al. (2000a,b), Milton
(1995, 1998) and references therein.

The possibility of particle production due to space-time curvature has been
discussed by Schrodinger (Schrodinger, 1939), while other early work is due to
DeWitt (DeWitt, 1953), and Imamura (Imamura, 1960). The first thorough treat-
ment of particle production by an external gravitational field was given by Parker
(Parker, 1968, 1969). Particle creation from the quantum scalar vacuum by ex-
panding or contracting spherical shell with Dirichlet boundary conditions is con-
sidered in (Setare and Saharian, 2001). In another paper the case is considered
when the sphere radius performs oscillation with a small amplitude and the ex-
pression is derived for the number of created particles to the first order of the
perturbation theory (Setare and Saharian, 2001). Now in the present paper by us-
ing the result of (Setare and Saharian, 2001) we consider particle creation in closed
Robertson–Walker space-time, when the scale factor represent an asymptotically
static space-time.

2. GRAVITATIONAL PARTICLE CREATION

In flat space-time, Lorentz invariance is a guide which generally allows to
identify a unique vacuum state for the theory. However, in curved space-time, we
do not have Lorentz symmetry. In general, there does not exist a unique vacuum
state in a curved space-time. As a result, the concept of particles becomes ambigu-
ous, and the problem of the physical interpretation becomes much more difficult
(Ford, 1997; Milton, 1995). The particle creation by an expanding universe was
first hinted in the work of Schrodinger (Schrodinger, 1939), this phenomenon was
first carefully investigated by Parker (Parker, 1969, 1971). We restrict our atten-
tion to the case of spatially closed Robertson–Walker universe whose metric is as
following

ds2 = a2(η)(dη2 − dl2), (1)

dl2 = dχ2 + sin2 χ (dθ2 + sin2 θdϕ2). (2)

where a(η) is the scale factor and η is conformal time, 0 ≤ χ ≤ π . Let us con-
sider a real massive scalar field which coupled to the closed Robertson–Walker
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background. With the dependence of the radius of curvature a(η) on time, the case
under consideration is a dynamical Casimir effect with moving boundaries (Setare
and Saharian, 2001). The corresponding wave equation is

(� + m2 + ξ R)φ = 0, (3)

where R is the scalar curvature

R = 6(a′′ + a)

a3
, (4)

where prime stands for the conformal time-derivative, ξ is a coupling constant,
here we consider the conformal coupling ξ = 1/6, in this case the (3) as (Bordag
et al., 2001)

φ′′(x) + 2a′

a
φ′(x) − �(3)φ(x) +

(
m2a2 + a′′

a
+ 1

)
φ(x) = 0, (5)

where �(3) is the angular part of the Laplacian operator on a three-sphere. The
solutions of (5) are

φ
(+)
λl M (x) = 1√

2a(η)
gλ(η)φλl M (χ , θ , ϕ). (6)

The eigenfunctions of the three-dimensional Laplacian are as

φλl M (χ , θ , ϕ) = 1√
sin χ

√
λ(λ + l)!

(λ − l + 1)!
P−l−1/2

λ−1/2 (cos χ )Yl M (θ , ϕ), (7)

λ = 1, 2, . . . , L = 0, 1, 2, . . . , λ − 1 ,Yl, M are spherical harmonics, and Pν
µ(z) are

the adjoint Legendre functions on the cut. The time-dependent function gλ satisfies
the oscillatory equation (Bordag et al., 2001)

g′′
λ(η) + ω2

λ(η)gλ(η) = 0, (8)

where

ω2
λ(η) = λ2 + m2a2(η). (9)

Let us consider an exactly solvable case when

a(η) =
√

A + B tanh
η

η0
A > B, (10)

where A, B and η0 are constants, this corresponds to the contraction for B < 0
and expansion for B > 0. The corresponding frequencies are

ω2
λ(η) = λ2 + m2

(
A + B tanh

η

η0

)
. (11)
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For asymptotically static situation at past and future the in- and out- vacuum states
can be defined, where we use the notations

ωin
λ =

√
λ2 + m2a−, ωout

λ =
√

λ2 + m2a+, a± = lim
η→±∞ a(η) (12)

for the corresponding eigenfrequencies. Now we need to solve the equation (8)
with ωλ(η) given by (9). The corresponding solutions are given by hypergeometric
function. The normalized in- and out- modes are given by formula (Birrell and
Davies, 1982)

gs
λ(η) = (

2ωs
λ

)−1/2
exp[−ıω+

λ η − ıω−
λ η0 ln[2 cosh(η/η0)]] × 2 F1

(
1 + ıω−

λ η0,

×ıω−
λ η0; 1 ∓ ıωs

λη0;
1

2
(1 ± tanh(η/η0))

)
, s = in, out, (13)

where uper/lower sign corresponds to the in/out- modes, and

ω±
λ = 1

2

(
ωout

λ ± ωin
λ

)
. (14)

The corresponding eigenfunctions are related by the Bogoliubov transformation

g(in)
λ = αλg(out)

λ + βλg(out)∗
λ , (15)

where αλ and βλ are the Bogoliubov coefficients. Using the linear relation between
hypergeometic functions, similar to (Birrell and Davies, 1982) for the coefficients
in this formula one finds

αλ =
(

ωout
λ

ωin
λ

)1/2
�

(
1 − ıωin

λ η0
)
�

( − ıωout
λ η0

)
�(−ıω+η0)λ�(1 − ıω+

λ η0))
, (16)

βλ =
(

ωout
λ

ωin
λ

)1/2
�

(
1 − ıωin

λ η0
)
�(ıωout

λ η0)

�(ıω−
λ η0)�(1 + ıω−

λ η0)
. (17)

The mean number of particles produced through the modulation of the single scalar
mode is

〈in|Nλ|in〉 = |βλ|2 = sinh2(πω−
λ η0)

sinh
(
πωin

λ η0
)

sinh
(
πωout

λ η0
) . (18)

The total number of particles produced is obtained by taking the sum over all the
oscillation modes:

〈in|N |in〉 =
∞∑

λ=1

sinh2[πη0(
√

λ2 + (A + B)m2 −
√

λ2 + (A − B)m2)/2]

sinh(πη0

√
λ2 + (A + B)m2) sinh(πη0

√
λ2 + (A − B)m2)

.

(19)
Therefore the energy related to the particles production is given by

E =
∞∑

λ=1

Nλω
out
λ (20)
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=
∞∑

λ=1

sinh2[πη0(
√

λ2 + (A + B)m2 −
√

λ2 + (A − B)m2)/2]

sinh(πη0

√
λ2 + (A + B)m2) sinh(πη0

√
λ2 + (A − B)m2)

×
√

λ2 + m2(A + B).

3. CONCLUSION

The creation of particles from the vacuum takes place due to the interaction
with dynamical external constraints. For example the motion of a single reflecting
boundary (mirror) can create particles (Birrell and Davies, 1982), the creation
of particles by time-dependent external gravitational field is another example of
dynamical external constraints.

It has been shown (Nugayev and Bashkov, 1979; Nugayev, 1982) that particle
creation by black hole in four dimension is as a consequence of the Casimir effect
for spherical shell. It has been shown that the only existence of the horizon and of the
barrier in the effective potential is sufficient to compel the black hole to emit black-
body radiation with temperature that exactly coincides with the standard result for
Hawking radiation. In this paper we have considered the particle creation in the
spatially closed Robertson–Walker space-time. We considered a real massive scalar
field which conformally coupled to the Robertson–Walker background. With the
dependence of the scale factor on time, the case under consideration is a dynamical
Casimir effect. When scale factor represent an asymptotically static space-time at
past and future, the in- and out- vacuum states can be defined. Then we obtained
the Bogoliubov coefficients, after that the number of particles produced and the
energy related to those can be explicitly found.
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